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Fur ther applications of radical bridging to the control 
of the stereochemistry of substitution reactions are 
under active investigation. For example, cis-i-t-butyl 
cyclohexyl bromide (axial bromine) is considerably more 
reactive than is transA-t-butyl cyclohexyl bromide 
(equatorial bromine). 
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Sir: 

The Mechanism of Aliphatic Bromination 
by N-Bromosuccinimide 

The following results demonstrate tha t in radical-
chain bromination with N-bromosuccinimide (NBS), 
the intermediate alkyl radical does not react with NBS 
to complete the bromination. 

Recent investigations of the H abstraction step of 
radical-chain benzylic bromination by NBS raised 
serious doubt about the validity of the previously ac­
cepted1 mechanism, which assumed hydrogen abstrac­
tion by the N-succinimidyl radical. The a+p correla­
tion for the reaction of substituted toluenes with bro­
mine, NBS, N-bromotetrafluorosuccinimide, and N-
bromotetramethylsuccinimide exhibit identical values 
of p.2 Hydrocarbons exhibit the same relative reac­
tivities toward benzylic substitution by molecular 
bromine or NBS. 3 Primary deuterium isotope effects 
in photobromination and bromination with NBS are 
nearly identical.4 These data suggest tha t the ab­
stracting specie in benzylic bromination by NBS is 
the bromine atom. NBS merely furnishes a low con­
centration of molecular bromine, presumably via its 
rapid ionic reaction with HBr. 

This mechanism, originally suggested by Gold-
finger5 in connection with studies of the analogous 
chlorination with N-chlorosuccinimide, is supported by 
the observation of McGrath and Tedder6 tha t a t low 
molecular bromine concentration, allylic substitution 
predominates over addition to a double bond. 

Radical chain bromination of ( + )-l-bromo-2-methyl-
butane, a27obsd +4 .89° , with molecular bromine is a 
highly selective reaction leading to ( —)-l,2-dibromo-2-
methylbutane, a27obsd —2.86°, of high optical purity.7 

The high selectivity of hydrogen abstraction by the 
bromine atom is at t r ibuted to bridging in the inter­
mediate complex, leading to the formation of a bridged 
radical. 
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This behavior is contrasted by the low selectivity 
demonstrated in hydrogen abstraction by a chlorine 
atom or /-butoxy radical, in which bridging is relatively 
unimportant . The high degree of optical purity of 
l,2-dibromo-2-methylbutane obtained in bromination 
with molecular bromine suggests tha t the second step 
in photohalogenation, the reaction of the radical with 
bromine, is also very rapid. Low concentration of 
bromine, or a less reactive halogenation agent, such as 
<-butyl hypochlorite, will not t rap the bridged radical 
before it has undergone racemization. 

These considerations suggested tha t it might be 
possible to elucidate the details of the mechanism 
of NBS brominative substitution of aliphatic com­
pounds. 

The photobromination of ( + )-l-bromo-2-methyl-
butane ( + 4.89°) with NBS was studied under the 
conditions listed in Table I. In each case the selec­
tivity was identical with tha t observed in reaction with 
molecular bromine; l ,2-dibromo-2-methylbutane was 
the only dibromide produced. 

TABLE I 

Solubi l i ty 
T e m p . , of N B S «ob8d 

So lven t 0 C . (mole/1.) ( t emp . , 0 C. )« 

CFCl3 25 0.0006 - 0 . 2 5 ( 2 8 ) 
CH2Cl2 40 0.29 - 0 . 3 0 ( 2 5 ) 
CCl4

6 76 0.006 - 0 . 0 6 ( 3 5 ) 
° Observed rotation of the l,2-dibromo-2-methylbutane pro­

duced. b Photoinitiation and thermal initiation give identical 
results. 

The preservation of optical activity in the 1,2-di-
bromo-2-methylbutane indicates tha t the reaction 
proceeds through a bridged radical.7 Two major 
pathways are available to the bridged radical: reaction 
with a brominating agent, BrZ, to yield optically active 
dibromide; or ring opening and racemization, followed 
by reaction with the brominating agent. 
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Since a 500-fold change in the concentration of NBS 
produces only a small change in the rotation of the 
final product, the reagent BrZ cannot be NBS. Pre­
sumably, the radical reacts with molecular bromine a t 
low concentration. Similar racemizations are ob­
served when ( + )-l-bromo-2-methylbutane is bro-
minated with molecular bromine under high dilution 
conditions. The slow addition of bromine to an ir­
radiated, refluxing solution of (4-)-l-bromo-2-methyl-
butane in CFCl3 produced ( — )-l,2-dibromo-2-methyl-
butane, a29obsd —0.80°. The decreased concentration 
of bromine effectively increases the lifetime of the inter­
mediate radical and allows partial racemization. The 
concentration of molecular bromine in the reaction of 
the active monobromide with NBS is less than tha t 
which may be mechanically maintained, and the ob­
served rotation of the l,2-dibromo-2-methylbutane 
produced is therefore quite small. We at t r ibute the 
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nearly total racemization in refluxing CCU-NBS to the 
effect of temperature observed in reactions of ( + )-l-
bromo-2-methylbutane with molecular bromine.7 

Earlier work 1 - 6 implied t h a t B r rather than succini-
midyl radical abstracted a hydrogen a tom from the 
substrate. The present s tudy indicates tha t the alkyl 
radical intermediate is not brominated by NBS, but 
presumably by molecular Br2 present in steady low 
concentration. 

Br- + RH >• HBr + R-
R- + Br2 > RBr + Br-

XBS + HBr >• Br2 + succinimide 
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Importance of "Gegenion" in Electrophilic Processes. 
cis and trans El Reaction Conditions 

Sir: 
Studies of the solvolyses of alkyl halides, tosylates, 

and sulfonium ion salts in aqueous ethanol led to the 
concept of electrophilic processes in which solvent-aided 
ionizations yield carbonium ions which are partit ioned 
among the available reaction routes, such as ejection 
of a proton to produce olefin (E l ) , or addition of a 
nucleophile ( S N I ) . The choice between these paths 
was considered to be independent of the method of 
generating the carbonium ion. Re-examination of the 
da ta employed to support this position shows deviations 
from this generalization.1 Again and again instances 
have been reported which indicate tha t the composition 
of the products in these processes are strongly de­
pendent upon the nature of the leaving group and sol­
vent.2-3 Recently, at tention has been sharply focused 
on this subject by Cram and Sahyun,4 and Winstein 
and Cocivera.5 Both groups suggest tha t the "gegen-
ions" play an important role in determining the prod­
ucts from these processes. 

A study of solvolytic elimination reactions in the 
3-deuterio-2-butyl tosylate system has helped to 
elucidate the role of both solvent and "gegenion." 
This system is convenient for studying the stereo­
chemistry, since /Yaws-elimination yields, in the case 
of ery<Aro-3-deuterio-2-butyl tosylate, deuterated cis-
2-butene and undeuterated <ra«i-2-butene. The stereo­
chemical purity of the tosylates was demonstrated to 
be better than 9 5 % by examination of the butenes 
obtained by reaction with potassium ethoxide in 
ethanol. The extent of cis- or ^raws-elimination is 
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known by separating the butene product mixture into 
its components and assaying their deuterium content by 
mass spectrometry, correcting for the small amounts of 
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T A B L E I 

P E R C E N T O L E F I N F O R M E D B Y C M - E L I M I N A T I O N ( M E C H A N I S M A) 

trans-
2-Butene, 

% Solvent 

Nitrobenzene 
Nitrobenzene 
Glacial acetic 

acid 

Solvent 
PK1 

- 1 1 . 3 
- 1 1 . 3 

- 6 . 1 

Tosylate 
isomer 

erythro-
threo-
erythro-

98 ± 2 
89 ± 2 
82 ± 2 

ClS-

2-Butene, 
% 

95 ± 2 
99 ± 2 
65 ± 2 

TABLE II 

P E R CENT OLEFIN FORMED BY irares-ELiMiNATioN (MECHANISM B) 

Solvent 

-OEt in eth­
anol 

Acetamide 
Acetamide 
80% aqueous 

ethanol 

Solvent 
PX. 

Tosylate 
isomer 

erythro-

trans- cis-
2-Butene, 2-Butene, 

% % 
100 100 

0.0 threo-
0.0 erythro-

-2 erythro-

92 ± 2 
81 ± 2 
66 ± 2 

69 ± 2 
91 ± 2 
84 ± 2 

intercontamination. The results of these experiments 
are summarized in Tables I and II . 

Ionization of the tosylate group and movement of a 
hydrogen atom through a 60° clockwise arc would pro­
duce the same carbonium ion from both threo- and 
ery/Aro-tosylates. However, in solvolytic eliminations 
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(80% aqueous ethanol, anhydrous acetamide, glacial 
acetic acid, 90% formic acid, and nitrobenzene) these 
isomeric tosylates yield olefins with widely differing 
extents of deuteration. These large differences suggest 
tha t these tosylates do not react through a common 
intermediate. This leaves as the only alternative the 
conclusion tha t the product precursor has the tosylate 
group intimately associated with the same face of the 
a-carbon atom to which it was at tached in the starting 
ester. 

In nitrobenzene olefin is produced by a nearly stereo-
specific cw-elimination, whereas in acetamide or 
aqueous ethanol the reaction follows a predominantly 
trans path. This alteration of mechanism from one 
extreme to another can be correlated with the basicities 
of the solvents,6 the less basic solvents favoring cis-
and the more basic solvents /rows-eliminations. 

The cis-elimination is rationalized by removal of the 
^-proton by the parting tosylate group which must re­
main on the same face of the carbonium ion until it 
has removed a r)roton from an adjacent carbon atom. 

.D 
"OTs'' I H3C CH3 

CH3 — • C=C A 
/ \ 

H ' + "CH3
 H H 

By contrast, ^raws-eliminations, which occur in the 
more basic solvents, require at tack by the solvent from 
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